
Autoregression vs.
Neural Networks: Fore-
casting Stock Implied
Volatility
An in-depth analysis of techniques
to predict implied volatility.

Hephaestus Applied Artificial Intelligence Association

MINERVA Investment Managment Society

Authors:

Member Role

Leonardo Cremona Head
Francesca Casillo Member
Micaela Contini Member
Francesco Sassi Member
Anna Maruccio Member

Milan, February 13, 2025

Contents

1 Introduction 2
1.1 Motivations . 2
1.2 Autoregression vs Neural Networks . 2
1.3 Data Sets . 3

2 Autoregression 2
2.0 The ARCH Model for Predicting Stock Implied Volatility 2
2.1 GARCH: The Next Generation of Volatility Models . 3
2.2 EGARCH: Capturing Asymmetric Volatility Effects . 6
2.3 GJR-GARCH: Accounting for Leverage in a Threshold Framework 8
2.4 FIGARCH: Modeling Long Memory in Volatility . 10
2.5 APARCH: Asymmetric Power ARCH . 11

3 Neural Networks 14
3.1 MLP . 14
3.2 Long Short-Term Memory (LSTM) Networks . 15
3.3 σ-Cell RLTV . 16

4 Evaluation 20
4.1 Autoregressive Models . 20
4.2 Neural Network Models . 20

5 Conclusions 22

6 References 23

A Appendix A: Model Metrics Across Tickers 24

B Appendix B: Code 25
B.1 Historical Volatility . 25
B.2 Rolling forecast for GARCH models: . 25

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

1 | Introduction

1.1 | Motivations
Volatility is among the most important measures used in finance: it captures how risky an investment
is, providing fundamental information when making decisions involving financial securities. Volatility
prediction is therefore extremely significant for any aspect of finance, from portfolio construction to asset
pricing. Indeed, one of the most practical applications of predicted volatility is options pricing: the most
common model used is the Black-Scholes, which uses Implied Volatility (IV) to price derivatives. Implied
volatility, as the name suggests, is the market’s expectation of future volatility of an underlying asset,
generally 30-days forward, and is closely related to the price of options.

In this paper, we took a quantitative approach to predict implied volatility, without performing any
sentimental analysis nor factoring in market perceptions of exogenous qualitative shocks. Therefore, we
assume that the value and behavior of future risk is explained fully by historical volatility.
Although this approach may seem simplistic in periods in which new crucial information is released to the
public, it yielded surprising results, thus confirming the assumption that, at least partially, future implied
volatility is explained by historical volatility.

1.2 | Autoregression vs Neural Networks
When forecasting stock implied volatility, analysts often compare two primary modeling paradigms:
traditional autoregressive volatility models and neural network–based methods. Traditional models—such
as GARCH, EGARCH, GJR-GARCH, FIGARCH, and APARCH—employ a parametric framework in
which past volatility is linked to future volatility through a predetermined functional form. These models
incorporate assumptions about the error term’s distribution, typically Gaussian or Student’s t, and
use specific parameters to capture distinct phenomena. For example, EGARCH and GJR-GARCH are
designed to account for asymmetric or “leverage” effects, where negative shocks to returns have a larger
impact on future volatility than positive shocks. FIGARCH extends the model to capture long memory
effects, while APARCH provides additional flexibility regarding how return deviations influence volatility.
This explicit parameterization allows for direct financial interpretation—such as understanding the speed
at which shocks decay—but it also limits the models’ ability to capture complex, higher-order nonlinear
relationships inherent in financial time series data.

In contrast, neural network models like LSTM, MLP, and Sigma Cell eschew strict parametric forms in
favor of a data-driven approach. These nonparametric models learn patterns directly from historical data,
enabling them to approximate highly nonlinear functions and capture intricate interactions that traditional
models might overlook. LSTM networks, in particular, are well suited for sequential data, as they are
designed to handle long-term dependencies and evolving patterns over time. Sigma Cell variants, with their
specialized gating mechanisms, further enhance the ability to model cyclical or regime-switching dynamics.
Although neural networks often achieve superior predictive accuracy by uncovering subtle patterns within
complex datasets, their inner workings typically lack the straightforward interpretability of autoregres-
sive models; individual parameters in a neural network do not readily translate into clear financial meanings.

The differences between these approaches extend to their data requirements and computational complexity.
Autoregressive volatility models generally require smaller datasets to estimate parameters reliably, provided
the underlying conditions of stationarity and stability hold. Their estimation routines, commonly based on
maximum likelihood methods, are computationally efficient, making them well suited for applications like
risk management where daily or monthly data are available. Neural networks, however, usually demand
extensive datasets to effectively learn the underlying dynamics, particularly when deeper architectures are
involved. Training such networks often requires significant computational resources—frequently involving
GPUs—and careful tuning of various hyperparameters, including learning rate, network depth, and
regularization. Moreover, while neural networks adapt flexibly to new patterns in data, they are prone to
overfitting if the available data are insufficient or exhibit high levels of nonstationarity.

In capturing nonlinear and asymmetric effects, each approach has its own merits. Autoregressive volatility
models incorporate built-in mechanisms to handle asymmetry. Models like EGARCH and GJR-GARCH
explicitly model the leverage effect, ensuring that negative shocks produce a disproportionate increase

Page 2

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

in volatility compared to positive shocks. FIGARCH, by accounting for long memory, and APARCH,
through its flexible treatment of return deviations, both demonstrate how these models can be tailored
to capture specific characteristics of volatility dynamics. Nevertheless, because these features are em-
bedded in predefined structures, the extent to which they can model more complex or higher-order
nonlinearities remains limited. Neural networks, by contrast, learn such effects implicitly. Their ability
to approximate complex functions enables them to capture asymmetries, nonlinear dependencies, and
even regime shifts without the need for predetermined functional forms. Recurrent architectures like
LSTMs are particularly adept at learning memory effects from sequential data, making them valuable
for short-term forecasting and high-frequency trading scenarios where market conditions can change rapidly.

The choice between these two modeling frameworks often depends on the specific application and practical
considerations. Traditional autoregressive models have long been favored by financial institutions and
academic researchers due to their historical track record, regulatory acceptance, and the clarity of their
parameter interpretations. They are widely used in risk management tasks, such as Value at Risk (VaR)
calculations and stress testing, where understanding the reasons behind volatility shifts is as important
as predicting the shifts themselves. On the other hand, neural network models shine in environments
characterized by high-frequency data or when additional data sources—such as fundamental indicators,
market sentiment, or unstructured information from news and social media—are incorporated into the
analysis. In these complex data environments, the enhanced flexibility and pattern recognition capabilities
of neural networks often yield superior predictive performance, even though this comes at the expense of
model transparency.

Practical considerations further influence the choice between these paradigms. The interpretability of
autoregressive models makes them particularly appealing in situations where transparency is essential,
such as when presenting results to regulators or corporate boards. In contrast, if the primary objective is
maximizing predictive accuracy, especially in high-dimensional or high-frequency settings, the data-driven
approach of neural networks may be preferable despite its “black box” nature. However, the higher
computational demands and potential for overfitting in neural network models require rigorous model
risk management practices, such as cross-validation and robust uncertainty quantification, in contrast to
the well-established statistical tests available for GARCH-family models. As a result, many practitioners
opt to explore both methods—sometimes even integrating them—to strike an optimal balance between
interpretability and forecasting performance.

Ultimately, the optimal strategy for predicting stock implied volatility depends on factors such as the
quality and quantity of available data, computational resources, and the specific forecasting objectives at
hand. In our analysis,we look exclusively at the raw prediction power of these two modeling approaches,
from which the reader can pull their own conclusions for their specific use case.

1.3 | Data Sets

1.3.1 | Data Source and Collection

For our analysis, we sourced historical stock price data using the yfinance Python library, which provides
access to financial market data through Yahoo Finance. The library allows efficient retrieval of adjusted
closing prices over a specified time span. Given our focus on implied volatility forecasting, we required a
robust dataset covering various financial instruments, including equity indices, commodities, and currency
pairs.

To ensure consistency across assets, we developed a function to retrieve historical prices for a given ticker
symbol over a predefined time span. The function get ticker data() utilizes yfinance to fetch daily
adjusted closing prices over a specified number of years. This method was chosen to ensure uniformity
in the representation of price series across different tickers, avoiding inconsistencies that may arise from
using different pricing conventions (e.g., closing price vs. adjusted closing price). The adjusted closing
price was specifically selected to account for corporate actions such as dividends and stock splits, ensuring
a more accurate measure of price changes. The tickers on which volatility was calculated and forecasted
are the following: GSPC, IXIC, FTSE, FCHI, GDAXI, FTSEMIB.MI, AXJO, HSI, N225, NSEI, BTC-USD, GC=F,
EURUSD=X, EURGBP=X.

Page 3

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

1.3.2 | Computing Volatility from Stock Prices

A crucial step in our methodology was the computation of historical volatility from the retrieved price
series. Instead of directly using implied volatility tickers from financial sources, we opted to calculate
historical volatility ourselves. The primary reason for this choice was data availability: not all tickers
in our study had implied volatility readily accessible. By standardizing our volatility computation, we
ensured a uniform approach across all assets, thereby eliminating discrepancies that could arise from
missing or inconsistent implied volatility data.
To compute historical volatility, we followed a two-step approach:

1. Log Returns Calculation:

■ Given a time series of adjusted closing prices, we computed log returns using the following
formula:

rt = ln(Pt) − ln(Pt−1) (1.1)

where Pt represents the adjusted closing price at time t, and rt is the log return.

■ This transformation ensures that price changes are expressed in relative terms, making compar-
isons across different assets more meaningful.

2. Historical Volatility Calculation:

■ Using the computed log returns, we calculated historical volatility as the rolling standard
deviation of returns over a predefined window (30 days in our case). The formula used is:

σt =
√

252 × std(rt) (1.2)

■ Here, the standard deviation is computed over a rolling window, and the factor
√

252 annualizes
the volatility, assuming 252 trading days in a year. This approach aligns with standard industry
practices for volatility estimation.

The functions compute returns() and compute historical volatility() implemented this method-
ology efficiently. Our approach ensured that we derived volatility measures consistently across all tickers,
providing a solid foundation for comparing autoregressive models and neural networks in forecasting
implied volatility.

By standardizing our data preprocessing pipeline, we mitigated inconsistencies in volatility data availability
and ensured fair model evaluation across multiple financial instruments. This preprocessing step was
instrumental in maintaining methodological rigor and reproducibility in our analysis.

Page 1

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2 | Autoregression

In this section, we will go over not only the implementation of these models and the intuition behind
them, as well as some of the results, but we will also look at some of the historical context behind each
model and how they build upon each other. It will also become clear that there isn’t a one size fits all for
these models, certain models are suitable for more stable markets, and others for more volatile markets.
Finally, before we start, the reader should keep in mind that in a real world setting, these models are
paired with extra parameters to model market sentiment as well as policy decisions among many other
indicators, and they are not the end all be all for volatility prediction.

2.0 | The ARCH Model for Predicting Stock Implied Volatility
Although not considered in our analysis, we take a brief look at the root of the auto-regressive models
for context. The AutoRegressive Conditional Heteroskedasticity (ARCH) [4] model is a cornerstone of
modern time series analysis, particularly in financial econometrics where volatility modeling is of prime
importance. Originally developed by Robert F. Engle in 1982, the ARCH model was introduced to capture
the phenomenon of volatility clustering—periods of high volatility often cluster together, followed by
periods of relative calm. This model has since inspired a range of extensions (such as GARCH, EGARCH,
and others) but remains fundamental to understanding how past data can inform estimates of current
volatility. In stock markets, volatility can be estimated from market prices of options (implied volatility),
and ARCH-based methods provide a rigorous framework for forecasting this implied volatility over time.

2.0.1 | Brief Historical Context

Prior to Engle’s seminal work, econometric models typically assumed constant variance (homoskedasticity)
in regression disturbances. This assumption, although mathematically convenient, often failed to capture
the real-world fluctuation patterns in financial markets. By observing empirical data, Engle noticed
that large price changes in financial asset returns are more likely to be followed by further large changes
(regardless of sign), while small changes tend to follow small changes—a phenomenon referred to as
volatility clustering.
In his 1982 paper, “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of
U.K. Inflation,” Engle introduced the ARCH(1) model as a new way to describe time-varying volatility.
Heteroskedasticity means that variances are not constant over time; instead, each period’s variance depends
on past observations. This framework revolutionized econometric modeling of volatility, earning Engle the
Nobel Prize in Economics in 2003.

2.0.2 | The Intuition Behind ARCH

“Conditional heteroskedasticity” implies that the variance of the current error term (or innovation) depends
on the magnitude of previous error terms. In simpler terms:

Volatility today (i.e., this period’s conditional variance) depends on the magnitude of deviations
(squared) from the mean in previous periods.

This dependence on past squared errors is what enables the ARCH model to capture volatility clustering.
When large shocks (positive or negative) occur, the memory of these shocks influences future volatility
estimates.
For financial data such as stock returns or implied volatilities derived from options, this approach is
particularly compelling.

2.0.3 | The Mathematical Formulation of ARCH

The simplest version, ARCH(1), may be introduced in a univariate time series context. Let {rt} represent
the returns or innovations (e.g., deviations of returns from their mean) at time t. We often write:

rt = σtεt (2.1)

where:

■ εt is a white noise process with zero mean and unit variance (εt ∼ i.i.d. (0, 1)).

Page 2

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

■ σt is the time-varying standard deviation (volatility) of rt.

ARCH models specify that σ2
t , the conditional variance of rt, depends on past squared values of the series.

Specifically, an ARCH(p) model can be written as:

σ2
t = ω + α1r

2
t−1 + α2r

2
t−2 + · · · + αpr

2
t−p (2.2)

where:

■ ω > 0 is a constant term.

■ αi ≥ 0 are the coefficients measuring the influence of past squared innovations (or returns).

In the simplest ARCH(1) case, we have just one lag:

σ2
t = ω + α1r

2
t−1. (2.3)

2.0.4 | Estimation and Forecasting

Estimation of ARCH models typically uses maximum likelihood estimation (MLE). Given a set of observed
returns {rt}:

1. Initial guess: Start with initial parameter values ω and αi.

2. Iterative optimization: Use a numerical optimization algorithm (e.g., BFGS, Newton-Raphson)
to find the parameter values that maximize the likelihood of observing the actual return series.

3. Conditional variance updates: For each time step t, the conditional variance σ2
t is computed

from its previous values, and the likelihood is calculated.

2.0.5 | Limitations

Limitations:

■ Parameter proliferation in high-order models.

■ Does not account for leverage effects.

■ May not capture long memory effects efficiently.

2.1 | GARCH: The Next Generation of Volatility Models
Building on the foundations laid by the ARCH model, the Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH) framework was introduced by Tim Bollerslev in 1986. GARCH extends
the original ARCH formulation by allowing not only past squared innovations but also past conditional
variances to affect the current level of volatility. This relatively simple enhancement often provides a more
efficient and realistic characterization of volatility in financial markets—especially useful for modeling and
predicting stock implied volatility.
The GARCH model (and its many variations) has since become the de facto workhorse for financial
volatility modeling, although workhorse does not necessarily imply the most accurate, but just the most
practical and widely used. Its success is largely due to its ability to capture long-memory volatility
persistence with fewer parameters, facilitating more stable and tractable forecasts of time-varying volatility
for assets and their implied volatilities.

2.1.1 | GARCH Basics and Intuition

Recall that the essential idea of ARCH is:

Today’s volatility depends on the magnitude of past squared returns.

The GARCH[2] framework supplements this by adding a dependence on past volatility levels themselves.
In other words, where ARCH conditions today’s variance on only the squared innovations from previous
periods, GARCH conditions it on both those squared innovations and yesterday’s (and possibly earlier
days’) estimated variance.
This addition of a feedback loop from past volatility estimates achieves two main benefits:

Page 3

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

1. Efficiency : Instead of requiring many lags of squared returns, GARCH can achieve a long memory
effect with fewer parameters.

2. Realistic Volatility Dynamics: Empirical evidence shows volatility often reacts not just to
extreme price changes but also to the lingering impact of higher or lower overall volatility regimes.

2.1.2 | Mathematical Formulation

The most commonly used GARCH specification in practice (and the one we’ve implemented) is the
GARCH(1,1) model, which can be viewed as a direct extension of the ARCH(1) idea. Let {rt} represent
the return process (or innovations) at time t. We write:

rt = σtεt,

where:

■ εt is white noise with zero mean and unit variance,

■ σt is the time-varying standard deviation of rt.

The GARCH(1,1) conditional variance specification is:

σ2
t = ω + α1 r

2
t−1 + β1 σ

2
t−1,

where

■ ω > 0 is a constant term,

■ α1 ≥ 0 measures the influence of last period’s squared innovation on current volatility (similar to
ARCH),

■ β1 ≥ 0 measures the influence of last period’s volatility level on current volatility.

For a general GARCH(p, q) model, the conditional variance depends on p lags of σ2 and q lags of r2:

σ2
t = ω +

q∑
i=1

αi r
2
t−i +

p∑
j=1

βj σ
2
t−j .

Key Properties and Constraints

1. Positivity: ω > 0, and typically αi, βj ≥ 0 to ensure the variance remains nonnegative.

2. Stationarity: For a GARCH(1,1), a common stationarity condition is α1 + β1 < 1. This helps
ensure that volatility does not explode to infinity.

3. Persistence: A large value of α1 + β1 close to 1 implies high persistence of volatility shocks; i.e.,
volatility remains elevated for an extended period following a large market move.

2.1.3 | Implementation

For all the ARCH based models, we used the arch library in python, a comprehensive and versatile tool
for implementing these types of models.
The definition is straight forward,

model = arch model (returns , vo l= 'GARCH ' , p=1, q=1, d i s t= ' normal ')

Then we used a rolling forecast method to create a graph of predictions. The number of days ahead that
these models can predicted is called the forecast horizon, and tends to be between 1 and 5 days. However,
to create a graph of predictions, we must necessarily use a one day forecast horizon, or their predictions
would over lap and would be messy on the graph, as well as the evaluation being orders of magnitude
more complicated.
The rolling forecast method allows for each point on the graph to be a one day ahead prediction, using a
rolling window of past data to inform predictions. What it does is it trains the model on past data (the
window) up to a time t, making parameter estimation more precise, and then predicts the value for time
t+1, which is then graphed. The function is then called again to predict time t+2, but the data from

Page 4

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

the previous day is not the data the model predicted, but rather the realised volatility of the previous
day. Longer windows (500+) allow for smoother curves and less sensitive to short term fluctuations,
however can be slow to react to sudden market changes. Shorter windows (i.e., 30 days) are much more
responsive, but tend to be very jumpy. In our implementation, we used an initial window of around 5
years (1290 days) to match the training data of the neural network models, and then switched to a 30 day
rolling window for the ”test” portion of the data to mimic testing a trained neural network. This has the
advantages of allowing the model to be more resilient to short term fluctuations, but still responsive to
sudden market changes. However, as you will see in the following section, these models remain very jumpy

2.1.4 | Estimation and Forecasting

The estimation procedure for GARCH is similar to ARCH:

1. Maximum Likelihood Estimation (MLE): Parameters ω, αi, and βj are typically estimated by
maximizing the likelihood function under the assumption that {rt} (conditional on σ2

t) follows a
certain distribution—often Gaussian, but sometimes Student’s t for fatter tails.

2. Iterative Methods: As with ARCH, practitioners use iterative optimization techniques (e.g.,
BFGS, Newton-Raphson) to find parameter estimates.

3. Forecasting Volatility: After fitting, we use the parameter estimates to forecast future volatility:

■ A one-step-ahead variance forecast in GARCH(1,1) is

σ̂2
t+1 = ω̂ + α̂1 r

2
t + β̂1 σ̂

2
t .

■ Multi-step forecasts generally converge to the long-run average variance, given by

ω̂

1 − α̂1 − β̂1

,

if α̂1 + β̂1 < 1.

((a)) GARCH Best Case; MAE=0.517 ((b)) GARCH Worst Case; MAE=11.47

Figure 2.1: Best and Worst case for GARCH

2.1.5 | Why GARCH Might Be Preferred to ARCH

1. Efficiency :
A GARCH(1,1) can effectively capture long-memory effects in volatility with just three parameters
(ω, α1, and β1). By contrast, an ARCH(p) might need many more parameters (and lags) to produce
a comparable volatility autocorrelation profile.

2. Adaptive Memory:
GARCH allows volatility to be influenced by its own past levels. This “memory of volatility” aligns
well with observed financial time series, where volatility states tend to persist even if there are no
large shocks in subsequent periods.

3. Broad Applicability:
GARCH-based techniques are widely used across equity, fixed-income, FX, and commodities markets,
making the model a standard tool in quantitative finance.

Page 5

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.1.6 | Advantages and Limitations

Advantages:

1. Efficient Parameterization: GARCH(1,1) uses fewer parameters yet can capture significant
volatility persistence.

2. Widely Researched and Validated: Decades of empirical studies show GARCH typically offers
strong in-sample and out-of-sample performance for many financial assets.

3. Flexible Extensions: Numerous variants (EGARCH, TGARCH, IGARCH, etc.) address asymme-
try, leverage effects, or other real-world market features.

Limitations:

1. Symmetry in Volatility Shocks: The basic GARCH(1,1) does not differentiate between positive
and negative returns (it uses squared returns). Real markets often exhibit “leverage effects,” where
negative shocks have a stronger impact on future volatility than positive shocks.

2. Model Misspecification: If the true volatility process has structural breaks or regime shifts (e.g.,
different volatility regimes), a simple GARCH(1,1) may be inadequate.

3. Distributional Assumptions: Assuming normally distributed errors might underestimate tail
risk. More sophisticated versions (e.g., GARCH with t-distributed errors) can address heavier tails.

2.2 | EGARCH: Capturing Asymmetric Volatility Effects
While GARCH models offer an efficient way to capture volatility clustering, they often assume that
positive and negative shocks have a symmetric effect on future volatility. In practice, many financial
markets exhibit the so-called leverage effect: negative returns (e.g., price drops) tend to increase future
volatility more than positive returns of the same magnitude. To accommodate this asymmetry, Daniel B.
Nelson introduced the Exponential GARCH (EGARCH)[6] model in 1991, providing a more flexible
framework that captures differential impacts of shocks and still maintains a tractable form for forecasting
volatility—particularly relevant when modeling implied volatility in equities.

2.2.1 | Key Idea and Model Specification

Instead of modeling σ2
t linearly (as in GARCH) or modeling it strictly via past squared returns (as in

ARCH), EGARCH works with the logarithm of the conditional variance. A standard EGARCH(1,1)
can be written as:

log
(
σ2
t

)
= ω + β log

(
σ2
t−1

)
+ α

(∣∣zt−1

∣∣− E
[∣∣zt−1

∣∣]) + γ zt−1,

where:

■ σ2
t is the conditional variance of rt.

■ zt−1 = rt−1

σt−1
are the standardized residuals (shocks from the previous period).

■ E
[∣∣zt−1

∣∣] is the expected value of the absolute standardized shock.

■ ω, α, β, and γ are parameters to be estimated.

This formulation introduces several unique features:

1. Log of Variance: Modeling log
(
σ2
t

)
rather than σ2

t directly automatically ensures σ2
t > 0 without

imposing positivity constraints on the parameters.

2. Magnitude of Shocks: The term
∣∣zt−1

∣∣ − E
[∣∣zt−1

∣∣] measures how large the absolute shock is,
relative to its average magnitude. This captures the size effect on volatility. For a standard normal
distribution (as in our case) the expectations is

√
2/π, but it can differ base on the assumed

distribution.

Page 6

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

3. Sign of Shocks (Leverage Effect): The coefficient γ multiplies zt−1, thereby incorporating the
sign of the innovation. If γ < 0, negative shocks increase future volatility more than positive shocks
of the same magnitude, reflecting the leverage effect commonly seen in equities.

4. Persistence: The parameter β plays a role analogous to β1 in GARCH(1,1), governing how slowly
or quickly volatility reverts to its long-term average.

2.2.2 | Asymmetry and Leverage Effect

A hallmark of EGARCH is its built-in capacity to model asymmetry. Specifically:

■ Symmetric Case: If γ = 0, then the model becomes symmetric in terms of volatility response to
positive or negative shocks.

■ Leverage Effect: If γ < 0, negative shocks have a stronger impact on future volatility than positive
shocks of the same magnitude.

In equity markets, negative price movements often accompany rising leverage ratios for firms, thus
heightening perceived risk and volatility. EGARCH captures this mechanism by directly incorporating
the sign and magnitude of shocks into the conditional variance equation.

2.2.3 | Implementation

For the EGARCH model, the only thing that changes is the model definition

model = arch model (returns , vo l= 'EGARCH ' , p=1, q=1, d i s t= ' normal ')

The rolling forecast and horizon stay the same, refer back to subsection 2.1.4 if re clarification is needed.
All the parameter estimations are handled by the library.

2.2.4 | Estimation and Forecasting

Estimation of EGARCH typically proceeds via Maximum Likelihood Estimation (MLE), assuming
a probability distribution for the standardized residuals zt. Common distributions include:

■ Normal Distribution: Often a baseline assumption, though it may underestimate tail risk.

■ Student’s t Distribution: Provides heavier tails for large, infrequent shocks.

((a)) EGARCH Best Case; MAE=0.53 ((b)) EGARCH Worst Case; MAE=11.3

Figure 2.2: Best and Worst case for EGARCH

The log-likelihood function is maximized using iterative algorithms (e.g., BFGS or other quasi-Newton
methods). Once estimated, forecasting follows similarly to GARCH. For instance, the one-step-ahead
forecast for log

(
σ2
t+1

)
is obtained by plugging in the latest estimates and data into the EGARCH

equation. Multi-step forecasts converge toward a long-run equilibrium implied by the parameters (assuming
stationarity conditions are met).

Page 7

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.2.5 | Advantages and Limitations

Advantages

1. Positivity Guaranteed: The log specification means no ad-hoc constraints on parameters to keep
variance positive.

2. Captures Leverage Effects: EGARCH explicitly incorporates the sign of shocks, making it
well-suited for equity markets.

3. Flexible Functional Form: Taking the log of variance allows a more flexible and potentially
smoother dynamic response compared to linear GARCH.

Limitations

1. Complexity: Estimation is more involved than standard GARCH, and convergence can be sensitive
to starting values.

2. Interpretation of Parameters: The interpretation of ω and γ can be less intuitive than in linear
GARCH models.

3. Potential Overfitting: Like any model with additional parameters, EGARCH can overfit if not
carefully regularized or validated, especially for smaller sample sizes.

2.3 | GJR-GARCH: Accounting for Leverage in a Threshold Framework
The GJR-GARCH[5] model, named after Glosten, Jagannathan, and Runkle (1993), builds upon the
GARCH framework by introducing an additional leverage term to capture the asymmetric effects specifically
tied to negative shocks. This enhancement is particularly relevant in equity markets, where downward
price movements often trigger stronger volatility reactions than upward movements of similar magnitude.

2.3.1 | Key Idea and Model Specification

A standard GJR-GARCH(1,1) model can be written as:

σ2
t = ω + α1 ε

2
t−1 + γ1 ε

2
t−1 I{εt−1 < 0} + β1 σ

2
t−1,

where:

■ εt−1 are the residuals (innovations) from the mean equation, often rt−1 − µ,

■ σ2
t−1 is the conditional variance from the previous period,

■ I{εt−1 < 0} is an indicator function that equals 1 if εt−1 < 0 and 0 otherwise,

■ ω > 0 is a constant,

■ α1 ≥ 0 measures the influence of the previous period’s squared shock (similar to standard GARCH),

■ γ1 captures the additional impact of negative shocks on future volatility,

■ β1 ≥ 0 measures the persistence of past volatility levels.

Interpretation of the Indicator Function. The term γ1 ε
2
t−1 I{εt−1 < 0} effectively adds extra

weight to squared shocks when they are negative. Thus, a negative shock of a given magnitude will
increase next period’s volatility more than a positive shock of the same magnitude would.

2.3.2 | Asymmetry and Leverage Effect

By explicitly modeling the difference between negative and positive returns, GJR-GARCH is able to
capture the leverage effect—a phenomenon often observed in equity markets where downward price
movements increase financial leverage in firms and may result in sharper volatility spikes. This asymmetry
term is critical for analysts and traders who rely on realistic volatility estimates to manage downside risk.

Page 8

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.3.3 | Implementation

As per the previous models, the same rolling forecast method and windows are used, and the model is
defined using the arch library as follows

model = arch model (returns , vo l= 'GARCH ' , p=1, o=1, q=1, d i s t= ' normal ')

where the o parameter here represents γ1, and is set to one to include it in the model (the real value is
then estimated by the library)

2.3.4 | Estimation and Forecasting

■ Estimation: GJR-GARCH parameters are typically estimated via Maximum Likelihood Es-
timation (MLE) under an assumed distribution for the errors (e.g., Normal or Student’s t).
Optimization algorithms like BFGS or other gradient-based methods are employed.

■ Forecasting: After estimation, one-step-ahead forecasts of σ2
t+1 are obtained by plugging the latest

values into the GJR-GARCH equation. Multi-step forecasts can be derived by iteratively applying
the conditional variance recursion, though they may converge to a long-run variance if stationarity
conditions (like α1 + γ1/2 + β1 < 1 in the GJR-GARCH(1,1) case) are satisfied.

((a)) GJR-GARCH Best Case; MAE=0.5151 ((b)) GJR-GARCH Worst Case; MAE=11.78

Figure 2.3: Best and Worst case for GJR-GARCH

2.3.5 | Advantages and Limitations

Advantages

1. Captures Asymmetry Explicitly: By including an indicator for negative shocks, GJR-GARCH
naturally handles leverage effects.

2. Parsimonious Extension of GARCH: It only adds one parameter (γ1) to the standard
GARCH(1,1) while delivering significantly improved realism for equity markets.

3. Flexible Implementation: Many software libraries (arch, rugarch, etc.) directly support GJR-
GARCH, making it straightforward to implement.

Limitations

1. Binary Threshold: The indicator function is a sharp cutoff at zero, which may not always capture
other subtle asymmetries (e.g., news-driven or regime-dependent effects).

2. Possible Overfitting: Adding more parameters (for instance, multiple thresholds) can complicate
estimation, especially with limited data.

3. Distributional Assumptions: If large outliers or heavy tails are present, practitioners may still
need to consider Student’s t or other distributions for the error term.

Page 9

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.4 | FIGARCH: Modeling Long Memory in Volatility
While GARCH-type models capture volatility clustering and persistence, many financial time series
exhibit even longer-lived volatility dependencies, often referred to as “long memory.” The Fractionally
Integrated GARCH (FIGARCH)[1] model, introduced by Baillie, Bollerslev, and Mikkelsen (1996),
extends the GARCH framework to accommodate fractional integration in the volatility process, thereby
capturing these protracted dependencies more effectively.

2.4.1 | Key Idea and Model Specification

A general FIGARCH(p, d, q) model can be viewed as a fractional integration of the GARCH process.
Typically, the model is written using lag operators. Let L be the lag operator (Lxt = xt−1). The
FIGARCH process for the conditional variance σ2

t often takes the form:(
1 − β(L)

)
σ2
t = ω +

[
1 − ϕ(L) (1 − L)d

]
ε2t ,

where:

■ εt = rt − µ (the residual or innovation from the mean equation),

■ σ2
t is the conditional variance,

■ Lag Polynomials β(L) and ϕ(L): Represent the weighted impact of past variances and shocks,
respectively. They are computed as

β(L) = β1 L + β2 L
2 + · · · , ϕ(L) = ϕ1 L + ϕ2 L

2 + · · · .

■ Fractional Differencing Operator (1 − L)d: Defined using a binomial series expansion:

(1 − L)d =

∞∑
k=0

(
d

k

)(
−L

)k
, with

(
d

k

)
=

Γ(d + 1)

Γ(k + 1) Γ(d− k + 1)
.

This operator allows even old shocks to have a diminishing yet persistent effect on today’s volatility.

■ d is the fractional differencing parameter, taking values in 0 ≤ d ≤ 1.

A commonly used parsimonious version is the FIGARCH(1, d, 1) model. The key parameter is d,
which controls the degree of fractional integration:

■ d = 0: The model reduces to GARCH.

■ 0 < d < 1: Indicates long memory, with autocorrelations of volatility decaying more slowly.

■ d = 1: Often considered non-stationary, so typically d must be strictly less than 1 for stability.

Long Memory Interpretation. A positive d close to 1 suggests that a shock to volatility dies out
very gradually, implying high persistence. If d is small (but greater than 0), the memory is still longer
than standard GARCH, but not extreme.

2.4.2 | Implementation

Same as other models, it is defined using the arch library, and the other parameters are estimated
automatically

am = arch model (returns , vo l= 'FIGARCH ' , p=1, q=1, d i s t= ' normal ')

Page 10

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.4.3 | Estimation and Forecasting

■ Estimation: Estimating FIGARCH involves maximum likelihood or quasi-maximum likelihood
methods, with specialized optimization routines to handle the fractional differencing term. Conver-
gence can be more challenging compared to standard GARCH, and starting values for d can impact
the final estimates.

■ Forecasting: Once fitted, one-step-ahead forecasts of σ2
t+1 are computed similarly to GARCH-type

models, except the volatility recursion includes the fractional differencing component. Multi-step
forecasts reflect the slowly decaying effect of past volatility shocks, yielding longer-lasting impacts
in the forecast path than a standard GARCH model would.

((a)) FIGARCH Best Case; MAE=0.648 ((b)) FIGARCH Worst Case; MAE=8.78

Figure 2.4: Best and Worst case for FIGARCH

2.4.4 | Advantages and Limitations

Advantages

1. Captures Long Memory: FIGARCH can model slowly decaying volatility autocorrelations that
standard GARCH-type models might miss.

2. More Realistic in Certain Markets: For assets known to exhibit persistence over long horizons
(e.g., certain commodity, FX, or equity markets), FIGARCH may yield improved fit and forecasts.

3. Adaptable Framework: The model generalizes GARCH, retaining much of its structure while
allowing for fractional integration.

Limitations

1. Complex Estimation: Fitting FIGARCH requires more sophisticated numerical methods and can
be sensitive to starting values.

2. Interpretation of d: While d signifies the degree of long memory, it can be less intuitive to interpret
and validate compared to simpler GARCH parameters.

3. Higher Computational Cost: The fractional differencing terms increase the computational
complexity, potentially slowing down forecasting for large datasets or real-time applications.

2.5 | APARCH: Asymmetric Power ARCH
Observing that volatility series often exhibit both asymmetry and nonlinear relationships with past shocks,
researchers sought a unified model that could address these features more flexibly than standard GARCH
or even some of its asymmetric variants.The Asymmetric Power ARCH (APARCH)[3] model,
introduced by Ding, Granger, and Engle (1993), generalizes the ARCH/GARCH framework by allowing for
a power transformation of the conditional standard deviation and explicitly modeling asymmetry. Through
its flexible parameterization, APARCH can capture various empirical features of financial volatility, such
as heavy tails, skewness, and different types of leverage effects.

Page 11

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.5.1 | Key Idea and Model Specification

A general APARCH(p, q) model specifies the conditional standard deviation raised to a power δ (hence
the term “power ARCH”). In the simplest APARCH(1,1) form, the model can be expressed as:

σδ
t = ω + α

(
|εt−1| − γεt−1

)δ

+ β σδ
t−1,

where:

■ σt is the conditional standard deviation (not variance) of rt,

■ εt = rt − µ is the innovation or residual,

■ δ > 0 is the power parameter,

■ γ is the asymmetry or leverage parameter,

■ ω, α, β are nonnegative parameters (with ω > 0 typically).

Role of δ. By allowing δ ̸= 2, APARCH can better capture deviations from the standard GARCH
assumption (which implicitly uses δ = 2). For instance, δ might be estimated to be closer to 1, which can
reflect absolute deviations rather than squared deviations.

Asymmetry via γ. If γ ≠ 0, then positive and negative shocks do not affect volatility in the same way.
Typically, γ > 0 indicates that negative shocks (when εt−1 < 0) have a larger effect on volatility than
positive shocks of the same magnitude.

2.5.2 | Implementation

As for the other models, this one is implemented using the arch library, and the variables are estimated
by the function

am = arch model (returns , vo l= 'APARCH ' , p=1, q=1, d i s t= ' normal ')

2.5.3 | Estimation and Forecasting

■ Estimation: As with other GARCH-type models, APARCH parameters are often estimated via
Maximum Likelihood Estimation (MLE), assuming a chosen distribution for the error terms
(e.g., Normal or Student’s t). Numerical optimization routines (e.g., BFGS) are employed to find
the set of parameters (ω, α, β, γ, δ) that best fits the data.

■ Forecasting: Once fitted, one-step-ahead forecasts of σδ
t+1 are computed by plugging in the last

observed residual and standard deviation. Multi-step forecasts can be derived by iterating the
APARCH recursion, similar to GARCH-based models. The resulting σt can then be squared and
annualized if the objective is to forecast variance in an annualized scale.

((a)) APARCH Best Case; MAE=0.518 ((b)) APARCH Worst Case; MAE=11.24

Figure 2.5: Best and Worst case for APARCH

Page 12

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

2.5.4 | Advantages and Limitations

Advantages

1. Flexible Functional Form: The power parameter δ introduces a wide range of possible dynamic
behaviors.

2. Direct Asymmetry Control: APARCH explicitly separates the impact of negative shocks from
positive shocks through γ.

3. Unified Framework: It generalizes various ARCH/GARCH family models under one umbrella,
offering a potentially better fit for data with complex volatility structures.

Limitations

1. Increased Complexity: More parameters (γ, δ) can make convergence slower and estimation more
prone to local optima.

2. Interpretation Challenges: δ and γ can be less intuitive to interpret compared to standard
GARCH parameters.

3. Overfitting Risk: As with other extended GARCH models, added flexibility can lead to overfitting
if the sample size is not sufficiently large.

Page 13

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

3 | Neural Networks

3.1 | MLP
The Multi-Layer Perceptron (MLP) is a class of feedforward artificial neural networks that consists of
multiple layers of interconnected neurons. It is made up of an input layer, one or more hidden layers, and
an output layer, where each layer is fully connected to the next through weighted connections.
Mathematically, an MLP with one hidden layer can be expressed as:

h(1) = ϕ(W (1)x + b(1)) (3.1)

y = ϕo(W (2)h(1) + b(2)) (3.2)

where:

1. x is the input vector,

2. W (1) and b(1) are the weight matrix and bias for the hidden layer,

3. h(1) is the hidden layer output after applying activation function ϕ,

4. W (2) and b(2) are the weight matrix and bias for the output layer,

5. y is the final output, and ϕo is the activation function for the output layer.

3.1.1 | Training and Loss Function

The MLP is trained using backpropagation, an algorithm that computes gradients through the chain rule
and updates weights through Adam optimization. The loss function for the regression task is:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3.3)

The weights are updated iteratively using gradient descent, ensuring the network learns to minimize the
error.

3.1.2 | Advantages vs. Disadvantages of MLP

Advantages:

■ Universal Approximation: MLPs can approximate any continuous function given enough hidden
neurons.

■ Feature Learning: They can learn feature representations automatically, without requiring
hand-crafted features.

■ Parallel Computation: Efficiently implemented on modern GPUs, allowing scalable training.

Disadvantages:

■ Prone to Overfitting: Without regularization techniques such as dropout or weight decay, MLPs
can memorize training data instead of generalizing.

■ Difficulty in Handling Sequential Data: Unlike RNNs, MLPs lack memory mechanisms, making
them not optimal for tasks involving temporal dependencies.

■ Hyperparameter Sensitivity: Performance depends on parameters such as learning rate, number
of layers, and activation functions, which require extensive tuning.

Page 14

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

3.1.3 | Model Training and Evaluation

The model was trained for 50 epochs with batch size of 32. Two hidden layers were used, the first with 64
neurons and the second with 32. To evaluate the model, the metrics used were the Mean Squared Error
(MSE), the Mean Absolute Error (MAE), the R-squared (R2), and Mean Squared Log Error (MSLE).
These metrics provide a comprehensive assessment of the model’s predictive accuracy and its ability to
capture the underlying volatility dynamics. The results are visualized using plots that show the actual vs.
predicted volatility over time, providing insights into the model’s performance across different tickers.

((a)) MLP Best Case; MAE=0.701245 ((b)) MLP Worst Case; MAE=1.795485

Figure 3.1: Best and Worst case for MLP

3.2 | Long Short-Term Memory (LSTM) Networks
Financial markets are highly dynamic, with volatility playing a crucial role in investment decisions, risk
management, and portfolio optimization. Traditional autoregressive models, such as GARCH-based
approaches, have been widely used to model and forecast volatility. While effective, these models operate
under strict assumptions, such as linearity and stationarity, which may limit their ability to capture
complex market behaviors.
Deep learning models, particularly Long Short-Term Memory (LSTM) networks, provide a promising
alternative by leveraging temporal dependencies and learning from sequential data patterns without
requiring strong parametric assumptions. LSTMs are specifically designed to retain long-term dependencies,
making them well-suited for capturing volatility clusters and structural breaks observed in financial time
series. Given the success of deep learning in various forecasting tasks, our goal was to assess the performance
of LSTMs in forecasting implied volatility and compare them against traditional autoregressive models.

3.2.1 | Introduction to LSTM for Volatility Prediction

Recurrent Neural Networks (RNNs) are well-suited for time series forecasting due to their ability to
capture sequential dependencies. However, traditional RNNs suffer from the vanishing gradient problem,
limiting their ability to learn long-term dependencies. To address this limitation, Long Short-Term
Memory (LSTM) networks introduce memory cells and gating mechanisms that regulate information flow,
making them highly effective for financial time series forecasting.
In this project, we implemented an LSTM model to predict the implied volatility of various financial
instruments, including equity indices, commodities, and currencies. Our LSTM model was trained on
historical volatility computed from adjusted closing prices. As discussed earlier in the paper, our data
preprocessing approach included retrieving adjusted closing prices, computing log returns, calculating
historical volatility, normalizing the data, and performing a train-test split. This standardized preprocessing
ensured consistency across all tickers and prepared the data effectively for model training.

3.2.2 | LSTM Model Architecture

The LSTM model was implemented using Keras and structured as follows:

■ Input Layer: Takes a sequence of past volatility values.

■ LSTM Layers: Capture temporal dependencies in the data.

Page 15

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

■ Dropout Layers: Reduce overfitting by randomly dropping neurons during training.

■ Dense Layer: Produces the final predicted volatility value.

The model was compiled using the Adam optimizer with mean squared error (MSE) loss function,
and trained using early stopping to prevent overfitting.

3.2.3 | Model Training and Evaluation

The model was trained for 10 epochs with a batch size of 64. Predictions were compared against actual
values using common evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE),
and R-squared (R²). These metrics provided insight into the model’s performance in capturing volatility
patterns and predicting future values.
Figure 3.2 illustrates the actual and predicted close prices for the FTSE index and Bitcoin (BTC-USD)
using the LSTM model. The model captures the general trend in volatility, particularly during stable
market conditions, but some deviations are noticeable during periods of high market fluctuation. The
FTSE index shows a relatively smooth prediction alignment, whereas BTC-USD exhibits a higher degree
of volatility, making it more challenging for the model to forecast extreme price movements. These
visualizations provide insight into the model’s predictive capabilities across different asset classes.

((a)) LSTM Model: Actual vs. Predicted Close for
FTSE Index

((b)) LSTM Model: Actual vs. Predicted Close for
BTC-USD

Figure 3.2: LSTM Model Performance on Selected Tickers

3.2.4 | Improved LSTM Model

An improved LSTM model was trained with 50 epochs and dropout regularization (0.5) to enhance
generalization. Early stopping was applied to halt training when validation loss stopped improving.
The improved model exhibited better predictive performance, with reduced MSE and higher R² scores
compared to the basic LSTM model.

3.2.5 | Conclusion

LSTMs offer a powerful approach for forecasting implied volatility, leveraging sequential dependencies in
historical volatility data. Compared to traditional autoregressive models, LSTMs provide the flexibility
to learn nonlinear patterns, making them a promising tool for financial time series forecasting. The
incorporation of advanced techniques, such as dropout regularization and early stopping, further enhances
model robustness.

3.3 | σ-Cell RLTV
The σ-Cell RNN model [7] introduces a novel hybrid approach to volatility forecasting by integrating
Recurrent Neural Networks (RNNs) with the principles of Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH) models. This model leverages the dynamic capabilities of RNNs to capture
complex patterns in financial time series data while incorporating the time-varying volatility estimation of
GARCH models. It addresses the limitations of traditional econometric models, such as their inability to
capture nonlinear dependencies and their reliance on fixed parameters.

Page 16

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

The core of the model is the σ-Cell RNN, implemented as a custom PyTorch module. The model
consists of a time-varying parameter network, a residual RNN layer, and an output layer. The RNN
layer is implemented using a Gated Recurrent Unit (GRU), which is well-suited for capturing sequential
dependencies in time series data. The GRU is defined by the following equations:

zt = σ(Wzxt + Uzht−1 + bz) (3.4)

rt = σ(Wrxt + Urht−1 + br) (3.5)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1) + bh) (3.6)

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (3.7)

Where

1. zt is the update gate, with xt being the input at time t, ht−1 the hidden state from the previous
time step, and σ the sigmoid function.

2. rt is the reset gate

3. h̃t is the candidate hidden state

4. ht is the final hidden state at time t.

The GRU’s ability to selectively retain or discard information from previous time steps makes it particularly
effective for modeling financial time series.
The forward pass of the σ-Cell RNN is defined by the following equations:

wt = ϕ̃(Wxt−1 + b) (3.8)

Ws,t = π1(wt), Wr,t = π2(wt) (3.9)

ht = GRU(xt−1, ht−1) (3.10)

G(ht) = ϕ(htWho + bo) (3.11)

x̃t−1 = xt−1 −G(ht) (3.12)

σ̃2
t = ϕ(σ̃2

t−1Ws,t + x̃2
t−1Wr,t + bh) (3.13)

σ2
t = ϕo(σ̃2

tWo + bo) (3.14)

Here

1. wt represents the time-varying weights

2. Ws,t and Wr,t are the weights for the historical variance and residual error, respectively

3. ht is the hidden state computed by the GRU

4. σ2
t is the estimated conditional volatility at time t

5. ϕ and ϕo are activation functions, typically ReLU.

Page 17

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

3.3.1 | Training and Loss Function

The model is trained using the Adam optimizer, with a learning rate scheduler to adjust the learning rate
during training. As a loss function, we used the Mean Squared Error (MSE), which measures the squared
difference between the predicted and actual volatility values, and is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.15)

where yi is the actual volatility and ŷi is the predicted volatility. The MSE loss is computed using
PyTorch’s nn.MSELoss() function, where the training loop iterates over the training data, computing the
loss for each time step and updating the model’s parameters using backpropagation. The validation loop
evaluates the model’s performance on the test data using the same MSE loss function.

3.3.2 | Advantages vs. Disadvantages for σ-Cell

Advantages:

■ Dynamic Volatility Modeling: it incorporates time-varying parameters that adapt to changing
market conditions, making it more flexible than traditional GARCH models, which use fixed
parameters.

■ Integration of RNNs: by using an RNN (GRU), the model can capture long-term dependencies
in time series data

■ Residual Learning: a residual learning mechanism is used to compute the difference between the
input and the predicted value, which helps improve the accuracy of volatility predictions.

■ Scalability: the model can be extended to handle multivariate time series.

Disadvantages

■ Computational Complexity: training the model requires significant computational resources,
especially for large datasets.

■ Risk of Overfitting: the model’s flexibility and large number of parameters increase the risk of
overfitting.

■ Sensitivity to Hyperparameters: the performance depends heavily on the choice of hyperparam-
eters (e.g., learning rate, hidden size, warm-up steps), which may require extensive tuning.

■ Training Instability: the model can suffer from exploding gradients during training, especially if
the data is not properly scaled or if the learning rate is too high.

■ Dependence on Initialization: the model’s performance can be sensitive to the initialization of
weights and hidden states, which may lead to inconsistent results across different runs.

3.3.3 | Model Evaluation

The performance of the σ-Cell RNN model is evaluated using a test dataset, with predictions made after
a warm-up period 1 to allow the model’s internal states to stabilize. The predicted volatility is compared
to the actual volatility using metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE),
and R-squared (R2), and Mean Squared Log Error (MSLE). These metrics provide a comprehensive
assessment of the model’s predictive accuracy and its ability to capture the underlying volatility dynamics.
The results are visualized using plots that show the actual vs. predicted volatility over time, providing
insights into the model’s performance across different tickers.

1training warmup steps refer to an initial phase of training where the learning rate is gradually increased from a small
value to the target learning rate (in our case 0.0001) over a specified number of steps or epochs

Page 18

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

((a)) σ- Cell Best Case ((b)) σ- Cell Worst Case

Figure 3.3: Best and Worst case for σ- Cell

3.3.4 | Final Considerations

This novel approach of combining GARCH-like structures with RNN is solid but as outlined above, it
comes with many limitations. Indeed, throughout the training across all tickers, the hidden state size
had to be continuously adjusted to prevent overfitting, noting that a good compromise for most was a
value of 32, but for some tickers like BTC-USD, it had to be increased to capture more complex patterns
in a highly volatile environment. In addition to this, the random initialization states made it hard to
obtain consistent results even across the same tickers. The model’s predictive power is quite promising,
but finding a way to stabilize results and states is crucial for determining its suitability across markets.

Page 19

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

4 | Evaluation

In this section, we discuss the evaluation methods used for the models. The main metrics we looked at
were:

■ The mean absolute error (MAE)

MAE =
1

n

n∑
i=1

|yi − ŷi|

■ The mean squared error (MSE)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

■ The mean log squared error (MSLE)

MSLE =
1

n

n∑
i=1

(log(1 + yi) − log(1 + ŷi))
2

We contemplated looking at other common model evaluation criteria (such as Akaike information criterion,
Bayesian information criterion etc.), but as we mentioned in the introduction, we are considering exclusively
the predicting power of these methods, and thus we are not looking to penalize said methods for extra
parameter usage, something which these later criteria do.

4.1 | Autoregressive Models
Here are the results of the metrics for each model, averaged over each ticker:

Metric Mean

MSE 41.21
MAE 3.501
MSLE 0.0548

Table 4.1: GARCH Model
Metrics (4sf)

Metric Value

MSE 39.37
MAE 3.545
MSLE 0.05539

Table 4.2: EGARCH Model
Metrics (4sf)

Metric Value

MSE 30.99
MAE 3.09
MSLE 0.04046

Table 4.3: FIGARCH Model
Metrics (4sf)

Metric Value

MSE 43.15
MAE 3.536
MSLE 0.05429

Table 4.4: APARCH Model Metrics (4sf)

Metric Value

MSE 42.41
MAE 3.594
MSLE 0.05475

Table 4.5: GJR-GARCH Model Metrics (4sf)

As we can see, the model which performed the best was FIGARCH, with a mean MSE across all tickers of
31 vs the others of 39-43. Thus for the ARCH based models, on a wide scale, we crown FIGARCH winner.

4.2 | Neural Network Models

Metric Mean

MSE 3.191
MAE 0.892
MSLE 0.005737

Table 4.6: MLP Model Metrics
(4sf)

Metric Value

MSE 0.2119
MAE 0.3357
MSLE 0.04252

Table 4.7: LSTM Model Metrics
(4sf)

Metric Value

MSE 0.4465
MAE 0.2351
MSLE 0.001823

Table 4.8: σ-Cell Model Metrics
(4sf)

Page 20

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

A comprehensive analysis leads to the conclusion that although the three models are suitable for predicting
historical volatility, σ-Cell might have an edge over the other two, with a mean MSE slightly higher than
that of LSTM but lower values on the other two metrics.

Page 21

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

5 | Conclusions

To conclude, although these types of models are quite different and each has its own advantages and
disadvantages, when considering pure prediction power based on past volatility data, LSTM and σ.Cell
models seem to perform the best. However, this result does not preclude the existence of better models,
and it might also vary depending on the parameters assigned to each of the models. Indeed, in some cases,
the interpretability of model parameters is crucial, as understanding what each of the latter represents
can be just as important as achieving high predictive accuracy. In other cases, maximizing performance
may take precedence over interpretability, but this is necessarily our case since we are considering a metric
that refers to market movements and is thus subject to various external factors, such as macroeconomic
events, investor sentiment, and liquidity conditions.

Certain models, particularly those from the neural network family, may benefit from additional context,
whereas traditional econometric models provide a clearer structure for understanding volatility dynamics.
As a result, while LSTM and σ-Cell models demonstrate strong predictive performance on historical
volatility data, their effectiveness may fluctuate when exposed to different market regimes or when
additional explanatory variables are introduced. Therefore, the choice of model should be guided not only
by its raw predictive accuracy but also by its adaptability to changing market conditions and its ability to
integrate meaningful financial insights.

Page 22

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

6 | References

[1] Richard T. Baillie, Tim Bollerslev, and Hans-Ole Mikkelsen. Fractionally integrated garch (figarch)
model. 1996.

[2] Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity (garch). 1986.

[3] Zhongjun Ding, Clive W.J. Granger, and Robert F. Engle. Asymmetric power arch (aparch) model.
1993.

[4] Robert F. Engle. Autoregressive conditional heteroskedasticity with estimates of the variance of u.k.
inflation. 1982.

[5] Lawrence R. Glosten, Ravi Jagannathan, and David E. Runkle. Threshold garch (gjr-garch) model.
1993.

[6] Daniel B. Nelson. Exponential garch (egarch) model. 1991.

[7] German Rodikov and Nino Antulov-Fantulin. Introducing the σ-cell: Unifying garch, stochastic
fluctuations and evolving mechanisms in rnn-based volatility forecasting. 2023.

Page 23

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

A | Appendix A: Model Metrics Across Tickers

((a)) MSE

((b)) MAE

((c)) MSLE

Figure A.1: Model Performance Metrics

Page 24

Autoregression vs. Neural Networks: Forecasting Stock Implied Volatility

B | Appendix B: Code

B.1 | Historical Volatility
Given the unavailability of volatility indexes for all tickers, we used the following code to compute the
historical volatility:

Listing 1: Volatility Calculation

ADJ COL = ' Adj Close '

def g e t t i c k e r d a t a (t i c k e r , years span , a d j c o l=ADJ COL) :
end date = datet ime . datet ime . today ()
s t a r t d a t e = end date − datet ime . t imede l ta (days=int (year s span ∗ 365))
try :

data = yf . download (t i c k e r ,
s t a r t=s t a r t d a t e . s t r f t i m e (”%Y−%m−%d”) ,
end=end date . s t r f t i m e (”%Y−%m−%d”) ,
i n t e r v a l= ' 1d ')

i f data . empty or a d j c o l not in data . columns :
raise ValueError (”No data returned or i n v a l i d column . ”)

return data [a d j c o l]
except Exception as e :

raise ValueError (f ” Error downloading data f o r { t i c k e r } : {e}”)

def compute returns (p r i c e s e r i e s) :
r e tu rn s = np . l og (p r i c e s e r i e s) . d i f f () . dropna ()
r e tu rn s = re tu rns ∗ 100 # re s ca l e d
return r e tu rn s

def c o m p u t e h i s t o r i c a l v o l a t i l i t y (returns , window=30):
”””
Computes the r o l l i n g h i s t o r i c a l v o l a t i l i t y (annua l i zed) us ing a s p e c i f i e d window .
(Ca l cu la t ed as the r o l l i n g s tandard d e v i a t i on mu l t i p l i e d by 252 .)
”””
h i s t v o l = re tu rn s . r o l l i n g (window=window) . std () ∗ np . s q r t (252)
return h i s t v o l . dropna ()

B.2 | Rolling forecast for GARCH models:

Listing 2: Rolling Forecast for GARCH Models

def c o m p u t e r o l l i n g f o r e c a s t (model func , returns , i n i t i a l w i n d o w =60):
f o r e c a s t v a l u e s = []
f o r e c a s t d a t e s = []
for t in range (i n i t i a l w indow , len (r e tu rn s)) :

sub re tu rn s = re tu rn s . i l o c [: t]
try :

f o r e c a s t s e r i e s , = model func (sub returns , f o r e c a s t h o r i z o n =1)
f o r e c a s t v a l u e s . append (f o r e c a s t s e r i e s . i l o c [0])
f o r e c a s t d a t e s . append (r e tu rn s . index [t])

except Exception as e :
f o r e c a s t v a l u e s . append (np . nan)
f o r e c a s t d a t e s . append (r e tu rn s . index [t])

return pd . S e r i e s (data=f o r e c a s t v a l u e s , index=f o r e c a s t d a t e s)

Page 25

	Introduction
	Motivations
	Autoregression vs Neural Networks
	Data Sets

	Autoregression
	The ARCH Model for Predicting Stock Implied Volatility
	GARCH: The Next Generation of Volatility Models
	EGARCH: Capturing Asymmetric Volatility Effects
	GJR-GARCH: Accounting for Leverage in a Threshold Framework
	FIGARCH: Modeling Long Memory in Volatility
	APARCH: Asymmetric Power ARCH

	Neural Networks
	MLP
	Long Short-Term Memory (LSTM) Networks
	-Cell RLTV

	Evaluation
	Autoregressive Models
	Neural Network Models

	Conclusions
	References
	Appendix A: Model Metrics Across Tickers
	Appendix B: Code
	Historical Volatility
	Rolling forecast for GARCH models:

